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SUMMARY 

The potential benefits of using the Nonlinear Disturbance (NLD) equations, which govern 
flow variable fluctuations about an estimated mean, for the large-eddy simulation (LES) of wall 
bounded shear flows are investigated under this grant. In addition to verifying the suitability of 
the NLD equations for wall bounded flows, we build upon its advantages by introducing a new 
wall model that is easily and efficiently implemented within the NLD equation framework. The 
model implementation consists of defining a near wall region in which a modified linear set of 
equations are solved. The linear equation set allows disturbances to pass through and interact with 
the wall without altering the estimated mean. The streamwise and spanwise grid resolution of this 
near wall region can therefore be significantly relaxed while maintaining reasonable mean quanti- 
ties such as skin friction. Comparisons of predicted turbulence intensity profiles and wall pressure 
spectra to experimental data for a fully developed turbulent flat plate boundary layer are used to 
verify the suitability of the NLD equations for wall bounded flows. Preliminary results of a turbu- 
lent channel flow simulation are also presented to assess the new wall model. 

1. INTRODUCTION 

The NLD equations were introduced as an alternative form of the Navier Stokes equations for 
computational aeroacoustic (CAA) problems by Morris et al.[l]. Among other things, such prob- 
lems require that small amplitude, high frequency acoustic waves be accurately simulated in the 
presence of much larger, low frequency flow variations. 

The NLD equation approach addresses this requirement in two ways. First, these equations 
solve for flow variable fluctuations rather than the entire variable. Small amplitude fluctuations 
are therefore better represented with the available finite computer precision. Second, the imple- 
mentation of far field boundary conditions is improved with the NLD equations approach since 
these conditions are oftentimes formulated in terms of equations linearized about a mean flow 
(e.g. [2],[3]). Using the estimated mean to close the far field boundary condition equations leads 
to improved performance of these equations over other methods of specifying a mean, such as 
local space or time averaging. Poor implementations of far field boundary conditions can lead to 
significantly contaminated acoustic solutions and excessive integration time required to propagate 
initial transients out of the computational domain. 

The NLD equations approach has been applied to a number of problems including jet flow 
and noise radiation[l], ship airwake simulations[4] and aircraft engine liner simulations[5]. Under 
this grant, we investigated the suitability of this approach to wall bounded shear flows with the 
ultimate goal of applying it to CAA problems dependent on boundary layer turbulence, such as 
trailing edge noise or flap side edge noise. In addition, we looked to build upon the advantages of 
this approach by developing a wall model that is easily implemented within the framework of the 
NLD equations. 

Wall models attempt to reduce the computational expense of accurate wall bounded shear 
flow simulations by modeling rather than simulating the very small relevant turbulent scales of 
the inner regions of a boundary layer. Eliminating the necessity of resolving these scales signifi- 
cantly relaxes the grid spacing requirements which in turn reduces the required number of grid 
points and allows for much larger time steps. 



Wall models have typically been implemented in one of three ways. In the first, the computa- 
tional domain begins above the wall usually in the log-law region of the boundary layer and a wall 
stress boundary condition is specified[6][7]. In the second, the computational domain is decom- 
posed into two regions; an outer region where an LES is performed and an inner region where the 
boundary layer or Reynolds Averaged Navier Stokes (RANS) equations are solved[8]. The third is 
similar to the second except that, rather than specifying two distinct regions, the eddy viscosity is 
allowed to smoothly transition from a RANS type to an LES type depending on the grid resolu- 
tion[9][10]. 

The wall model implemented here is similar to third type listed above in that the equations 
transition from one type near the wall to another away from the wall. However, instead of transi- 
tioning from LES to RANS, we transition from LES to a linear perturbation equation set by damp- 
ing out selected terms of the NLD equations. The advantage is that the implementation is 
relatively simple and computationally efficient. A potential drawback of this approach is that its 
performance may depend on the fidelity of the estimated mean flow. 

The remainder of the report is organized as follows: Section 2 presents the NLD equations and 
discusses the potential impacts of the estimated mean. In section 3 the subgrid scale (SGS) turbu- 
lence model is described as well as the new wall model. The numerical algorithm and parallel 
implementation are discussed in section 4. In section 5 results of turbulent channel flow and flat 
plate boundary layer simulations are presented. Finally, some conclusions are drawn in section 6. 

2. GOVERNING EQUATIONS 

2.1 NLD Equations 

A filtered version of the NLD equations are solved. The starting point for the development of 
these equations is the selection of a filtering procedure for the compressible Navier Stokes equa- 
tions. Rather than using Favre averaged variables, we decompose the unaveraged variables into 
grid resolved and subgrid scale components. Upon substituting this decomposition into the Navier 
Stokes equations and filtering, the extra subgrid scale terms due to compressibility are subse- 
quently discarded since we are interested only in low Mach number compressible flow. 

One arrives at the filtered NLD equations by decomposing the resolved flow variables of the 
filtered Navier Stokes equations into two components, substituting them into the filtered Navier 
Stokes equations and rearranging terms. The two components of each variable are chosen to be 
(1) an a priori prediction of the mean quantity (referred to here as the estimated mean) and (2) the 
grid resolved part of the fluctuation away from the estimated mean: 

where the superscript 'r' denotes a filtered quantity, an overbar denotes the estimated mean com- 
ponent and the prime denotes a fluctuation quantity. The variables that are decomposed in this 
manner are the density, p, the velocity vector, Uj, the pressure, p, and the total energy, e. 

Upon substituting this decomposition into the Navier Stokes equations, the NLD equations 
can be rearranged into a conserved variable time derivative term, linear and nonlinear inviscid 
flux terms, SGS stress terms, source terms and, except for the continuity equation, viscous terms. 
The viscous term for the energy equation also includes a heat conduction term. The source terms 
consist of all of the terms that are independent of the fluctuating quantities and can be shown to be 
equal to the Reynolds stresses associated with the estimated mean. 



The equations are given below with all of the SGS stress terms included. Each equation has 
six terms in curly brackets corresponding to the terms listed above (except for continuity which 
does not have a viscous term). The variables have been nondimensionalized as follows: 

p* Uj* p* p = o ' Uj = t' p = 7^ 
_ _ef_ _ x^j 

e ~        2'       xj ~   T P»c„ L 

(2) 

where an asterisk denotes a dimensional quantity, c is the sound speed, L is a reference length and 
the subscript ~ denotes the dimensional freestream value. 

Continuity: 

Momentum: 

{p'r,t>+{(pv;+p'rüj),j}+{(P'V;);} = 

-{[(pup'-pV^-fP-t + tP^j} 

{(pu';+p'rai+p'v;)it}+ 

Energy: 
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{[(S,t'[J + u'Jxij + u'[T'[j)-q'J]j} 

where the viscous stress tensor and the heat flux are given by 

Tü = ^(ui,j + uj,i-|uk-k5ij) (6) 

T- 
qj "   RePr(Y-l) 

Y is the ratio of specific heats and Re and Pr are the Reynolds and Prandtl numbers, respectively, 
given by 

P~c„„L uC^ m 



2.2 Estimated Mean 

In the present study a Reynolds Averaged Navier Stokes (RANS) solver (with a q-(D turbu- 
lence model) is used to supply the estimated mean. Since, so far in the development of the NLD 
equations, we have not considered discarding any terms, the fluctuating variables will in general 
develop a mean component that when added to the estimated mean will provide the mean quantity 
that would be predicted by the traditional form of the Navier Stokes equations. In this respect, the 
solution is independent of the estimated mean. However, the fidelity of the estimated mean can 
impact the NLD equations solution in ways that could reduce or eliminate the advantages of using 
the NLD approach. 

One of the advantages of the NLD equation approach, when one considers acoustic predic- 
tions, is that the fluctuating component is stored separately from the estimated mean which conse- 
quently leads to a reduction in the impact of computer roundoff errors. If the estimated mean 
differs significantly from the mean that would be predicted from the traditional Navier Stokes 
equations then the 'fluctuating' component would develop a mean component and the roundoff 
error reduction will not be realized. For most aeroacoustic problems, it is relatively easy to predict 
accurate mean flows in the acoustic near and far fields. If one considers the density, which is typ- 
ically used as an acoustic variable, predicting the mean value is trivial for the low Mach number 
flows of interest here. 

Another advantage of the NLD equation approach that can be impacted by a poor estimation 
of the mean flow is the simplified implementation of boundary conditions. In the current work, 
for the flat plate boundary layer case, the estimated mean is used both for the radiation condition 
opposite the wall and for the inflow recycling condition used in the streamwise direction (these 
boundary conditions will be discussed further in section 2.3). A poorly estimated mean field can 
result in reflections at the radiation boundary and incorrect boundary layer growth rates due to the 
recycling condition. The final advantage that can be impacted by the estimated mean is the simpli- 
fied wall model that is discussed in section 3.2 

2.3 Boundary Conditions 

Fully developed turbulence simulations of a channel flow and a flat plate boundary layer were 
performed. For the channel flow case, periodic conditions are used in both the spanwise and 
streamwise flow directions. At the walls a no slip, adiabatic condition is imposed. 

The wall is treated in the same manner for the flat plate boundary layer case. Opposite the 
wall, the radiation boundary condition developed in Tarn and Webb[2] is used. Spatial periodicity 
is used in the spanwise direction. The inflow condition is specified using the recycling boundary 
condition of Lund et al. [11] in which the flow variables are sampled at a downstream location, 
scaled based on mean local boundary layer quantities and reintroduced at the inflow. The esti- 
mated mean flow is used to scale the variables here. The buffer zone developed by Wasistho et 
al. [12] is used at the outflow. This zone is approximately six boundary layer thicknesses long with 
grid points stretched in the axial direction and starts more than one boundary layer thickness 
downstream of the location where the flow variables are sampled for the inflow condition. 

3, MOPEMNG 

3.1 Subgrid Scale Stress Model 

As mentioned in section 2.1, the SGS stress terms associated solely with compressibility are 
discarded. For the continuity equation, this leads to: 



-[(puj)
r-pruj

r]J = 0 (9) 

For the momentum equations, the compressible extension of the Smagorinsky model as outlined 
by Moin et al. [13] is used except we do not employ the dynamic procedure for specifying the 
model coefficients. It has the form: 

-[(puiuj)
r-pruVj] = [puTTij --q^ijj 

[(pUi)
r-prur]it = 0 

where the second equation is associated with compressibility and 
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and 
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A is the filter width chosen here to be 

A = (AxAyAz) 

Finally, the energy equation SGS terms are modeled by 
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(15) 

(16) 
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PrT is the turbulent Prandtl number. Unlike [13], constant coefficients are used with the van Dreist 
near wall damping. We choose Cs = 0.012, Cj = 0.0066 and PrT = 0.60. The van Driest damping 
takes the form 

Cs   — Cs 1 - exp 
(    +Y\2 

A+ 
(17) 

)) 

where A+ is set to 25. 

3.2 Wall Model 

Under this grant, potential additional advantages of using the NLD equations were investi- 
gated by developing a wall model that is easily implemented within the NLD equation framework 
and is computationally very efficient. The idea is to modify the equations in the near wall region 
so that the mean of each fluctuating variable is forced to be zero. This consequently forces the 
mean of the total variable to be equal to the estimated mean. 



This is accomplished by damping out the nonlinear inviscid flux, SGS and source terms near 
the wall. Having eliminated these terms, we are left with the linear inviscid flux and the viscous 
terms. With the exception of the energy equation viscous term, the near wall equations are linear 
and as such cannot develop a mean quantity. The nonlinear term in the energy equation is not 
expected to be significant in the low Mach number flows of interest here but has been retained for 
computational convenience. 

The model is implemented by defining a variable X that varies from zero at the wall to unity at 
a specified location in the boundary layer. As implemented here, the location where X equals 
unity is a function of y+ as determined from the estimated mean flow. The nonlinear inviscid, SGS 
and source terms in the entire computational domain are then multiplied by X. Thus, once the 
damping function is determined at the beginning of the simulation, the presence of the wall region 
is transparent computationally. There is no special procedure for the near wall region, no auxiliary 
wall grid and no additional complication of the parallel implementation. 

The potential impact of a poorly estimated mean flow field is not addressed in this research 
since we consider cases in which RANS predictions are in very good agreement with experiment. 
It is noted, however, that there may be an impact. Flow separation may be a particular challenge 
for this approach (as it is with other available wall models) and will be investigated in the future. 
We do not anticipate any problems with using the NLD equations for separated flow in general as 
they have been successfully applied to unsteady laminar separated flow problems[14]. 

4. NUMERICAL APPROACH 

4.1 Scheme 

The equations outlined in sections 2 and 3 are transformed into a curvilinear coordinate sys- 
tem and solved using finite difference techniques. The spatial derivatives are evaluated using a 
sixth order central difference approximation and the solution is advanced in time using a fourth 
order Runge Kutta method. The unresolved, high wavenumber components of the solution are 
damped at each time step by adding a sixth order filter term operating on the conserved variables 
to the residuals. Thus, the scheme is fourth order accurate. For the boundary layer case, fourth 
order finite difference stencils are used at the radiation boundary opposite the wall for stability. 

4.2 Parallel Implementation 

The explicit algorithm described above is easily parallelized with excellent speedup using 
domain decomposition. At the beginning of each run, the computational domain is decomposed 
and distributed to the available processors. Each processor then advances the solution on its 
domain updating the interprocessor boundary data using the MPI library. The parallelism is trans- 
parent to the solution integration. 

The results presented here have been obtained using an eight node cluster of 450 MHz Pen- 
tium III processors running the Linux operating system, a 16 node SGI Power Challenge, 16 
nodes of an SGI Origin 2000 or a single 733 MHz Pentium III processor running Windows NT. 
The code requires, for example, 41 us per time step per grid point on the 733 MHz Pentium HI. 
Details on the scalability of a very similar algorithm can be found in Morris et al.[l] 



S. RESULTS AND DISCUSSION 

5.1 Fullv Developed Turbulent Boundary Laver 

In this section, results for a fully developed turbulent boundary layer simulation without wall 
modeling are presented. These results serve to validate the use of the NLD equations for wall 
bounded flows. The efficacy of the wall model is demonstrated in the next section where turbulent 
channel flow results are presented. 

The momentum thickness Reynolds number of the boundary layer simulated here is 5400. The 
Reynolds number per ft is 300,000. A freestream Mach number of 0.25 is used as a compromise 
between reduced compressibility effects and tolerable run time. The computational domain is 
68 x 38 x 28 in the streamwise, wall normal and spanwise directions, respectively, where 8 is the 
boundary layer thickness. The streamwise length given above is the distance from the inflow 
plane to the location where data is sampled for recycling. It does not include the buffer zone. 
Hyperbolic stretching is used in the wall normal direction which is discretized by 63 points. The 
wall spacing is set to l+. The streamwise and spanwise directions are discretized by 63 and 81 
points, respectively. The resolution in the streamwise direction is 184+ and 48+ in the spanwise 
direction. 

With this resolution, the near wall streaky structures that are spaced approximately 440+ apart 
in the streamwise direction and 80+ apart in the spanwise direction[15] will not be accurately rep- 
resented by the fourth order scheme used here (for comparison, Moin and Kim[15], who used a 
pseudospectral method to simulate turbulent channel flow, had grid points spaced 126+ apart in 
the streamwise direction and 2l+ apart in the spanwise direction.) This poorly resolved wall layer 
will cause some discrepancies in our comparisons, however, as will be shown, overall the results 
are promising. A simulation of this case with the wall model discussed in section 3.2 is currently 
being conducted. 

Predicted mean velocity profiles are plotted in figure 1 using inner and outer coordinates and 
compared to the estimated solution. This solution, being determined by a RANS calculation, is 
considered to compare very well with experimental data for the flat plate boundary layer case (the 
same can be said about the turbulent channel flow case discussed in the next section). 

Typical of LES of wall bounded flows using the Smagorinsky model with an underresolved 
wall region[16][17], the buffer region of the profile is too large and the skin friction coefficient is 
underpredicted (as evidenced by the high value of u+ at the boundary layer edge). The four 
regions of a turbulent boundary profile, however, are clearly evident. The agreement in the sub- 
layer is good so that a region of constant shear stress near the wall is correctly predicted. A log 
law region is visible with a slope close to that of the estimated mean (the y intercept is overpre- 
dicted due to the large buffer region.) A wake region is also evident and, as can be seen when plot- 
ted using outer variables, agrees quite well with the prescribed mean. 

Turbulence intensity profiles are presented in figure 2. In general, the agreement with Kleban- 
off 's experimental data is good despite the poor resolution of the near wall region. The effect of 
this poor resolution appears to be confined to that region. For the streamwise component, the peak 
is slightly overpredicted and is much smoother compared to the experimental data. This is in 
agreement with the overly large buffer region shown in the mean velocity profile. 

The effect of the large buffer region manifests itself differently in the wall normal and span- 
wise intensity profiles. For the wall normal component, which does not have a strong peak near 
the wall, the rate at which the intensity increases is underpredicted. In contrast, the rate at which 
the streamwise component increases is well represented by the simulation, however, the peak evi- 



dent in the experimental data is absent from the prediction. Beyond the buffer region, the compar- 
ison of each of the three components with the experimental data is good. 

In figure 3 the predicted wall pressure power spectral density is compared to experimental 
data. The following inner variables are used: 

<&pp(co)u? 
PP VX2 

(18) 

uT
2 

For the comparisons made here, the normalization variables were calculated using the estimated 
mean solution. 

Like the turbulence intensity profiles, the agreement with the experimental data is good, 
though some discrepancies are noted. One is that the decay of the spectra in the high frequency 
range is slightly underpredicted. In Farabee and Casarella[20], it is suggested that the structures 
responsible for the mid to high frequency pressure fluctuations reside in the buffer region of the 
boundary layer. Thus, the underpredicted decay rate of the spectra may be due to the relatively 
poor representation of the buffer region as discussed earlier. 

The other discrepancy is that for the entire frequency range, the levels appear to be slightly 
overpredicted suggesting that the root mean square (RMS) of the wall pressure fluctuations is too 
high. Farabee and Casarella[20] compared a number of experimental measurements of the wall 
pressure RMS and found significant scatter. They presented a plot of the wall pressure RMS nor- 
malized by the wall shear stress as a function of the Reynolds number based on the friction veloc- 
ity and boundary layer thickness. For the Reynolds number used in the present study, the 
normalized pressure RMS varies approximately from 2.3 to 3.5. The value predicted by the cur- 
rent simulation is 3.1. This happens to agree very well with the value of 3.2 given by an empirical 
relationship developed in Farabee and Casarella[20]. 

5.2 Channel Flow 

In this section, preliminary results of a turbulent channel flow simulation are presented to 
assess the new wall model. The Reynolds number based on the centerline velocity and channel 
half width is 12800. Based on the friction velocity, uT, and channel half width the Reynolds num- 
ber is 640. This corresponds to the Reynolds number used for the incompressible simulation pre- 
sented by Moin and Kim[15]. For our compressible case we use a centerline Mach number of 
0.10. 

The computational domain is 4nhx2hxnh in the streamwise, wall normal and spanwise 
directions, respectively, where h is the channel half width. Hyperbolic tangent stretching is used 
in the wall normal direction which is discretized by 37 points and varies from -h to h. The spacing 
at the walls is set to l+. Uniform point distributions are used in the streamwise and spanwise 
directions, which are discretized with 38 and 69 points, respectively. In wall units, the spacings in 
the streamwise and spanwise directions are 250+ and 32+, respectively. 

The wall model results presented in this section were obtained using a Heaviside function for 
the variable A. defined in section 3.2. If y+ is determined using the distance to the nearest wall, 
then A.(y+) = H(y£). Here, we use y£ = 25 which is at the inner edge of the log-law region of the 

estimated profile. 



Predicted velocity profiles with and without the wall model are plotted in outer and inner 
coordinates and compared to the estimated solution in figure 4. Like the boundary layer case dis- 
cussed in the previous section, the predicted velocity profile for the channel flow case has an 
excessively large buffer region and a wall shear stress that is too low when the wall model is not 
used. This simulation does, however, like the boundary layer case, predict a log-law region. 

The agreement between the estimated and predicted profiles improves when the wall model is 
used. This is particularly true in the near wall region which is consistent with the fact that in this 
region the wall model forces the time mean of the perturbations to be zero. Outside of this region, 
however, a log-law region fails to develop and the profile in the outer region is flat compared to 
the estimated mean. 

These shortcomings are most likely associated with the discrepancies found in figure 5 
between the turbulence intensity profiles predicted here and those of Moin and Kim[15], who 
used a well resolved wall layer. In this figure, the intensities are normalized by the friction veloc- 
ity of the estimated mean and plotted as a function of the wall normal coordinate. Only contribu- 
tions to the turbulence intensity from the resolved fluctuations are considered. The unresolved 
contributions parameterized by the SGS model are not included. Thus, one should expect the 
intensities predicted here to be lower than those of Moin and Kim since they used a finer grid and 
resolved rather than modeled more of the turbulent energy. However, the level of disagreement 
cannot be completely attributed to this difference. 

The wall normal and spanwise components are significantly underpredicted both with and 
without the wall model. In contrast, the streamwise component is overpredicted for most of the 
profile without the wall model and underpredicted with the wall model. 

A review of the literature reveals two plausible explanations for these discrepancies. The first 
is associated with the wall model. Since the nonlinear terms of the governing equations are 
damped out in the buffer region of the boundary layer, turbulence production there, which is pri- 
marily responsible for the near wall fluctuations, is suppressed. Mason and Thompson[21] found 
that when a log-law type of boundary condition is used (in lieu of simulating the viscous sublayer 
and the buffer region) the Smagorinsky model needed to be supplemented with a stochastic back- 
scatter model to represent the effect of the buffer region. 

In contrast, Piomelli et al. [22] had good agreement between their LES turbulence intensity 
predictions and experimental data using a log-law approximate wall condition without a backscat- 
ter model. Their wall condition enforced the law of the wall in a spatially averaged sense while 
Mason and Thompson[21] enforced it locally. According to Baggett[23], this difference is respon- 
sible for success of Piomelli et al. [22] since their approach more accurately models the turbulence 
structural information fed into the outer region by the inner region. It should be noted that another 
difference between the simulations of Mason and Thompson[21] and Piomelli et a/. [22] is that 
Mason and Thompson used a Smagorinsky model alone for the SGS stresses while Piomelli et al. 
used a mixed model. 

SGS modeling, in fact, is the second possible explanation we consider for the discrepancies 
found in figure 5. As discussed in section 3.1, a constant coefficient Smagorinsky model is used 
here with the van Driest near wall damping to account for the variation of the turbulence length 
scale as the wall is approached. This type of damping may not be an optimal choice. Piomelli[24] 
found, in simulations of coarsely resolved high Reynolds number channel flow simulations, that 
the van Driest damping causes 100 times more SGS dissipation than what would be generated if 
the dynamic procedure for determining the Smagorinsky constant were used without the van Dri- 



est damping. Thus, the dynamic Smagorinsky model will clearly increase the predicted turbulence 
intensity. 

Based on this review, two potential improvements to our simulations are apparent. One is to 
incorporate a stochastic backscatter model and the other is to implement the dynamic Smagorin- 
sky model. Piomelli's[24] finding and the success of Balaras et a/. [8], who used the dynamic 
model with their two layer approximate wall conditions, as well as the general acceptance that the 
dynamic model is an improvement over the constant coefficient model, compel us to believe that 
it alone may be sufficient to rectify the discrepancies found in the turbulence intensity profiles. 

6. CONCLUSIONS 

Llarge-eddy simulations of wall bounded shear flows were conducted using the Nonlinear 
Disturbance Equations. Our objectives were twofold. The first was to demonstrate that these 
equations, which have advantages over the traditional form of the Navier Stokes equations when 
computational aeroacoustic problems are considered, are capable of predicting wall bounded 
shear flow turbulence statistics. This objective was achieved with a simulation of a flat plate 
boundary layer. Although the velocity profile prediction was marginal, the turbulence intensity 
and wall pressure spectra predictions were good. 

The second objective was to build upon the advantages of using the Nonlinear Disturbance 
Equations by developing an efficient and easily implemented wall model. In this regard, work is 
not complete. The model was implemented and demonstrated some advantages. However, the tur- 
bulence intensity profiles for a channel flow simulation were significantly underpredicted. We 
believe that these discrepancies are associated with the decay of the subgrid-scale stresses as the 
wall is approached and plan to rectify the problem by implementing a more robust subgrid-scale 
stress model. This effort is currently underway. 
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FIG. 1. Predicted mean velocity profiles for the fully developed turbulent boundary layer case 
plotted on outer (top) and inner (bottom) coordinates compared to the prescribed solution. 
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FIG. 2. Predicted turbulence intensity profiles for the fully developed turbulent boundary layer cas 
compared to experimental data (taken from Schlichting[18]). Top - streamwise, middle - wall noi 
nal, bottom - spanwise. 
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FIG 3. Predicted fully developed turbulent boundary layer wall pressure power spectral density 
normalized by inner coordinates compared to experimental data taken from [19]. 
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